Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China.

نویسندگان

  • Fang Cao
  • Shi-Chun Zhang
  • Kimitaka Kawamura
  • Yan-Lin Zhang
چکیده

To better characterize the chemical compositions and sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions as well as stable carbon isotopic composition (δ13C) were measured in this study. Intensively open biomass burning episodes are identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass-burning episode, concentrations of PM2.5, OC, EC, and WSOC are increased by a factor of 4-12 compared to those during the non-biomass-burning period. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, demonstrating an important contribution from biomass-burning emissions. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, suggesting that biomass-burning aerosols in Sanjiang Plain are mostly fresh and less aged. In addition, the WSOC-to-OC ratio is lower than that reported in biomass-burning aerosols in tropical regions, further supporting that biomass-burning aerosols in Sanjiang Plain are mostly primary and secondary organic aerosols may be not significant. A lower average δ13C value (-26.2‰) is observed during the biomass-burning period, indicating a dominant contribution from combustion of C3 plants in the studied region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristics and sources of carbonaceous aerosols from Shanghai, China

An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotope...

متن کامل

Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols

To better understand the size-segregated chemical composition of aged organic aerosols in the western North Pacific rim, dayand night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using an Andersen impactor sampler with 5 size bins: Dp <1.1, 1.1–2.0, 2.0–3.3, 3.3–7.0, >7.0 μm. Samples were analyzed for the molecular composition of dicarboxylic acids, ketoacids, αdicar...

متن کامل

Chemical Characterization of Fine and Coarse Particles in Gosan, Korea during Springtime Dust Events

Particulate matter was collected at Gosan, Korea, a remote location in the East China Sea, from late-March through May, 2007. Two sizes of particles, fine (PM2.5) and coarse (PM10–2.5) modes, were analyzed for chemical composition. Samples were analyzed by mass, elemental and organic carbon, and inorganic ions. Organic molecular markers were also measured using solvent-extraction gas chromatogr...

متن کامل

Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013

During winter 2013, extremely high concentrations (i.e., 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi’an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic ca...

متن کامل

Climate forcing by carbonaceous and sulfate aerosols

An atmospheric general circulation model is coupled to an atmospheric chemistry model to calculate the radiative forcing by anthropogenic sulfate and carbonaceous aerosols. The latter aerosols result from biomass burning as well as fossil fuel burning. The black carbon associated with carbonaceous aerosols is absorbant and can decrease the amount of reflected radiation at the top-of-the-atmosph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Science of the total environment

دوره 572  شماره 

صفحات  -

تاریخ انتشار 2016